C*-Correspondences for Ordinal Graphs

Benjamin Jones

Arizona State University

October 20, 2025

Directed graphs

Definition

A directed graph is a collection $E = (E^0, E^1, r, s)$ for which

- \triangleright E^0 is the set of vertices
- $ightharpoonup E^1$ is the set of edges
- $ightharpoonup r,s:E^1 o E^0$ are the range and source functions

The C^* -algebra $C^*(E)$ is universal for mutually orthogonal projections $\{T_v: v \in E^0\}$ and partial isometries $\{T_e: e \in E^1\}$ satisfying the following relations:

- 1. $T_e^* T_e = T_{s(e)}$ for all $e \in E^1$
- 2. $T_{r(e)}T_e = T_e$ for all $e \in E^1$
- 3. $T_e^* T_f = 0$ for all distinct $e, f \in E^1$
- 4. $\sum_{e \in r^{-1}(v)} T_e T_e^* = T_v$ for all $v \in E^0$ satisfying $0 < |r^{-1}(v)| < \infty$

A vertex v satisfying $0<|r^{-1}\left(v
ight)|<\infty$ is said to be regular.



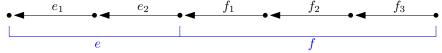
Composition of paths

Definition

A path e is a finite collection of edges $e_1, \ldots e_n$ such that $s(e_k) = r(e_{k+1})$. Define the length of e to be d(e) = n.

Can regard a vertex as a path of length 0.

Can compose paths e and f to get ef as follows:



Note: The edges in the paths e and f are well-ordered. The edges in ef are well-ordered, with order-isomorphism class coming from the *ordinal* sum d(e) + d(f).

Composition of longer paths

What if we allow d(e) and d(f) to take values in Ord outside of $[0, \omega)$?

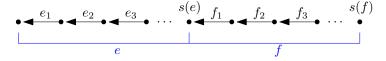


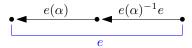
Figure: Composition of paths e, f with $d(e) = d(f) = \omega$ and $d(ef) = d(e) + d(f) = \omega \cdot 2$

Ordinal graphs

Definition

An ordinal graph is a small category Λ with a functor $d : \Lambda \to \operatorname{Ord}$ satisfying the following factorization property:

For every morphism $e \in \Lambda$ and $\alpha \leq d(e)$ there exist unique morphisms $e(\alpha), e(\alpha)^{-1} e \in \Lambda$ such that $d(e(\alpha)) = \alpha$ and $e = e(\alpha) e(\alpha)^{-1} e$



Ordinal graph C*-algebras

Every ordinal graph is automatically left-cancellative since ordinal addition is left-cancellative, so it has a C^* -algebra defined by Spielberg which I will denote C^* (Λ).

 $C^{*}\left(\Lambda\right)$ is universal for generators and relations:

$$\{T_{v}:d(v)=0\}\sqcup\{T_{e}:d(e)=\omega^{\alpha}\text{ for some }\alpha\in\mathrm{Ord}\}$$

- 1. $T_e^* T_e = T_{s(e)}$
- 2. $T_e T_f = T_{ef}$ if s(e) = r(f) and d(e) < d(f)
- 3. $T_e^* T_f = 0$ if $e\Lambda \cap f\Lambda = \emptyset$
- 4. $T_v = \sum_{e \in \Lambda^{\omega^{\alpha}}} T_e T_e^*$ if v is an α -regular vertex

α -regular vertices

Convenient notation:

$$\Lambda_{\alpha} = \{ e \in \Lambda : d(e) < \omega^{\alpha} \}$$
$$\Lambda^{\alpha} = \{ e \in \Lambda : d(e) = \alpha \}$$

Definition

A vertex $v \in \Lambda_0$ is α -source-regular if for every $e \in v\Lambda_\alpha$, $s(e)\Lambda^{\omega^\alpha} \neq \emptyset$. Define v to be α -row-finite if $v\Lambda^{\omega^\alpha}$ is finite, and v to be α -regular if v is α -source-regular and α -row-finite.

Examples

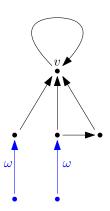


Figure: v is 1-source-regular, but not 1-row-finite.

Examples

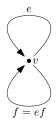


Figure: v is 1-regular

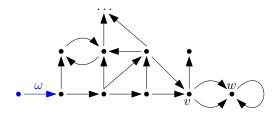


Figure: v is 1-regular but w is not

*C**-correspondences

Definition

For each $\alpha \in \operatorname{Ord}$, define X_{α} to be the completion of

$$\left\{f\in c_{c}\left(\Lambda^{\omega^{\alpha}},\,C^{*}\left(\Lambda_{\alpha}\right)\right):\,T_{s(e)}f\left(e\right)=f\left(e\right)\text{ for all }e\in\Lambda^{\omega^{\alpha}}\right\}$$

with the following operations which make it a C^* -correspondence:

$$(x \cdot a)(e) = x(e) a$$

$$\langle x, y \rangle = \sum_{e \in \Lambda^{\omega^{\alpha}}} x(e)^* y(e)$$

$$(T_g^* \cdot x)(e) = \begin{cases} x(ge) & s(g) = r(e) \\ 0 & \text{otherwise} \end{cases}$$

Results

Theorem

Suppose for each $\alpha \in \operatorname{Ord}$ and path $f \in \Lambda^{\omega^{\alpha}}$ such that r(f) is α -regular, ef = f implies e is a vertex. Then we have the following:

1. For every $\alpha \in \operatorname{Ord}$, the homomorphisms $\rho_{\alpha} : C^*(\Lambda_{\alpha}) \to C^*(\Lambda)$ defined by

$$\rho_{\alpha}\left(S_{e}\right)=T_{e}$$

are injective.

2. For every $\alpha \in \operatorname{Ord}$, the representation $(\psi_{\alpha}, \rho_{\alpha}) : (X_{\alpha}, C^*(\Lambda_{\alpha})) \to C^*(\Lambda_{\alpha+1})$ of X_{α} defined by

$$\psi_{\alpha}\left(\delta_{e}\right) = T_{e}$$

induces an isomorphism $\psi_{\alpha} \times \rho_{\alpha} : \mathcal{O}_{X_{\alpha}} \to C^* (\Lambda_{\alpha+1})$.

Results

Corollary

Suppose Λ satisfies condition (S). Then we have the following:

- 1. For every $\alpha \in \text{Ord}$, X_{α} satisfies condition (S).
- 2. A^* -homomorphism $\pi: C^*(\Lambda) \to A$ into a C^* -algebra A is injective iff $\pi(T_v) \neq 0$ for every vertex $v \in \Lambda_0$.