C*-correspondences for Ordinal Graphs

Benjamin Jones

Arizona State University

October 11, 2025

Ordinal Graph C*-algebras

Definition

An ordinal graph is a small category Λ with a functor $d: \Lambda \to \operatorname{Ord}$ satisfying the following factorization property:

For every morphism $e \in \Lambda$ and $\alpha \leq d(e)$ there exist unique morphisms $e(\alpha), e(\alpha)^{-1} e \in \Lambda$ such that $d(e(\alpha)) = \alpha$ and $e = e(\alpha) e(\alpha)^{-1} e$

Each ordinal graph Λ is left-cancellative, and hence has a C^* -algebra $C^*(\Lambda)$ universal for generators and relations

$$\{T_{v}:d(v)=0\}\sqcup\{T_{e}:d(e)=\omega^{\alpha}\text{ for some }\alpha\in\mathrm{Ord}\}$$

- 1. $T_e^* T_e = T_{s(e)}$
- 2. $T_e T_f = T_{ef}$ if s(e) = r(f) and d(e) < d(f)
- 3. $T_e^* T_v = 0$ if $e\Lambda \cap f\Lambda = \emptyset$
- 4. $T_v = \sum_{e \in \Lambda^{\omega^{\alpha}}} T_e T_e^*$ if v is an α -regular vertex

*C**-correspondences

Definition

Define $\Lambda_{\alpha}=\{e\in\Lambda:d\left(e\right)<\omega^{\alpha}\}$, $\Lambda^{\alpha}=\{e\in\Lambda:d\left(e\right)=\alpha\}$, and

$$X_{\alpha}=\left\{ f\in c_{c}\left(\Lambda^{\omega^{\alpha}},\,C^{*}\left(\Lambda_{\alpha}\right)\right):\,T_{s\left(e\right)}f\left(e\right)=f\left(e\right)\text{ for all }e\in\Lambda^{\omega^{\alpha}}\right\}$$

Then each X_{α} is a C^* -correspondence with operations

$$(x \cdot T_g)(e) = x(e) T_g$$

$$(T_g^* \cdot x)(e) = \begin{cases} x(ge) & s(g) = r(e) \\ 0 & \text{otherwise} \end{cases}$$

$$\langle x, y \rangle = \sum_{e \in \Lambda^{\omega^{\alpha}}} x(e)^* y(e)$$

Result

Theorem

Let Λ be an ordinal graph such that for each $\alpha \in \operatorname{Ord}$ and $f \in \Lambda^{\omega^{\alpha}}$ with r(f) α -regular, ef = f implies d(e) = 0. Then

- 1. The homomorphisms $\rho_{\alpha}: C^*(\Lambda_{\alpha}) \to C^*(\Lambda)$ defined by $\rho_{\alpha}(S_e) = T_e$ are all injective.
- 2. The Katsura ideal J_{α} for X_{α} is the ideal in $C^*(\Lambda_{\alpha})$ generated by $\{S_{\nu} : \nu \text{ is an } \alpha\text{-regular vertex}\}.$
- 3. $(\psi_{\alpha}, \rho_{\alpha}^{\alpha+1}): (X_{\alpha}, C^*(\Lambda_{\alpha})) \to C^*(\Lambda_{\alpha+1})$ defined by

$$\psi_{\alpha}\left(\delta_{f}\right)=T_{f}$$

$$\rho_{\alpha}^{\alpha+1}(S_e) = T_e$$

is a covariant representation of X_{α} .

4. The induced homomorphisms $\psi_{\alpha} \times \rho_{\alpha}^{\alpha+1} : \mathcal{O}_{X_{\alpha}} \to \mathcal{C}^*(\Lambda_{\alpha+1})$ are isomorphisms.

